20. Both parts of this problem deal with the critical case when the maximum acceleration becomes equal to that of free fall. The textbook notes (in the discussion immediately after Eq. 15-7) that the acceleration amplitude is  $a_m = \omega^2 x_m$ , where  $\omega$  is the angular frequency; this is the expression we set equal to  $g = 9.8 \text{ m/s}^2$ .

(a) Using Eq. 15-5 and T = 1.0 s, we have

$$\left(\frac{2\pi}{T}\right)^2 x_m = g \Rightarrow x_m = \frac{gT^2}{4\pi^2} = 0.25 \text{ m.}$$

(b) Since  $\omega = 2\pi f$ , and  $x_m = 0.050$  m is given, we find

$$(2\pi f)^2 x_m = g \implies f = \frac{1}{2\pi} \sqrt{\frac{g}{x_m}} = 2.2 \text{ Hz}.$$